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Abstract — Consider a multiconductor transmission line consisting of N,
conducting cylinders in inhomogeneous media consisting of N, homoge-
neous regions with permeabilities p, and permittivities ¢,. The inductance
matrix [ L] for the line is obtained by solving the magnetostatic problem of
N, conductors in N, regions with permeabilities p,. The capacitance
matrix [C] for the line is obtained by solving the electrostatic problem of
N, conductors in N, regions with permittivities ¢,. It is shown that
[L]=pgeolC171, where [C'] is the capacitance matrix of an auxiliary
electrostatic problem of N, conductors in N, regions with relative permit-
tivities set equal to the reciprocals of the relative permeabilities of the
magnetostatic problem, i.e., €/ /¢q = ug /1,

I. INTRODUCTION

Fig. 1 shows a multiconductor transmission line consisting of
N, conductors and N, insulating materials above a perfectly
conducting ground plane. The system is uniform in the z direc-
tion (direction of propagation), and the cross-sectional shapes of
the conductors and insulators are arbitrary. The insulators have
arbitrary permeabilities p, and permittivities €;,. An upper ground
plane could be present and treated as an additional conductor in
a manner similar to that of [1].

To the quasi-static approximation, the multiconductor trans-
mission line is characterized by a capacitance matrix [C], ob-
tained from an electrostatic analysis, and an inductance matrix
[L], obtained from a magnetostatic analysis. The formulation of
the problem for [C] and a numerical algorithm for its computa-
tion are given in [1). In the appendix of [1] it is shown that if the
insulating matter is nonmagnetic, the inductance matrix of the
line is given by

[L] =poeol G]™ (1)
Here [(,] is the capacitance matrix of the multiconductor trans-
mission line if all dielectric constants are set equal to 1.
In this paper we shall show that when the insulators are
magnetic, a modified relationship holds. In particular, it is

[L] =posolC] (2
where [C'] is the capacitance matrix of the line if all relative
permittivities are set equal to the reciprocals of the relative

permeabilities, i.e.,

7’

€ Mo

— =22 i=1,2,---,N,.
€ K,

(3)

Note that the auxiliary problem for finding [C’] has relative
permittivities less than unity if the corresponding relative per-
meabilities are greater than unity.

Relationship (2) is strictly true only if all conductors are
perfect. It assumes that all current in the magnetostatic problem
flows on the surfaces of conductors. For actual conductors,
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Fig. 1. A multiconductor transmission line in a multilayered dielectric and

magnetic region above a ground plane.

depending on the frequency, some of the current flows internal to
the conductors. Relationship (2) is then only approximate.

Although (2) can be inferred from the last two sentences in
[2, sec. V], we have not seen an explicit proof in the literature.
The purpose of this short paper is to give a simple proof of (2)
for the multiconductor case with layered media. ‘

II. PROOF OF (2)

The electrostatic problem from which [C] is calculated is
formulated in detail in [1]. We shall refer to that formulation
when needed. The magnetostatic problem from which [L] is
calculated is an extension of the formulation for nonmagnetic
media, given in the appendix of [1]. The formulation for magnetic
media is given below.

The inductance matrix [L] is an N, X N, matrix that satisfies

v=[L]T (4
where 47 and T are N, X1 column vectors. The jth element of I
is the z-directed conductlon current on the jth conductor. The
ith element of ¢ is the x-directed magnetic flux passing between
a unit length of the ith conductor ard the lower ground plane. If

.1 -
I=—ic’ 5
o L (5)

and if [C’]! exists, then (4) will imply that the desired relation-
ship (2) is true. In the remainder of this section, we establish (5).

We formulate the magnetostatic problem with magnetic media
in terms of the total electric current J,ru, on the surfaces of the
conducting cylinders and on the boundaries between different
magnetic media. The total electric current on the conducting
surfaces is the conduction current plus the magnetization current.
The total electric current on the magnetic media boundaries is
the magnetization current. The magnetic flux density B is given
by

B=V XA=VA_Xu,

(6)
where A, is the only component of 4 due to steady current
flowing in the z direction. For the two-dimensional problem, it is
given by

A<n~_2fh(nﬂppﬂm ™

o'l

where /, denotes the jth interface. The first N, interfaces are the
surfaces of the N, conductors. If the upper ground plane is
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present, the (N, +1)th interface is the surface of this plane. The
last N/ interfaces are the magnetic media boundaries. Thus,

M=M,+NJ (8)

where M, is N, if the upper ground plane is absent. If the upper

ground plane is present, then M, is N, +1. The number N; of

magnetic media boundaries could be greater than N, —1 because

these boundaries are arbitrarily shaped, not necessarily parallel to

one another or to the lower ground plane. In (7), p’ is the

position vector of dl’, and §’ is the position vector of the image

of dI’ about the lower ground plane.

Substituting (7) into (6) and assuming that p is not on any of
the interfaces {/, }, we obtain

ro & p—p o ¥

= T.(o -
B(p) 2w1§1f1, T(p)(lp—p’lz lo— 9l

2) Xu,dl'. (9)

The limits of (9) as p approaches /, from either side are

M Y
o e—0  0—P )
Bi(p)z_a—; fT(p/)( /|2—|p_6ll2 Xuldl
i1
J, !
w2 l10) (), {fjj’zl Ly (0

where f ; denotes the principal value of the integral over / /,, and
n is a unit vector normal to /, at p. Moreover, B* (p) is B(p) on
the side of /, toward which n points, and B~ (p) is B(p) on the
other side of 1.

On the surface of the ith conductor, A4, is constant and is the
x-directed magnetic flux y, passing between a unit length of the
ith conductor and the lower ground plane. Hence, similar to
[L, eq. (A2)],

ponl
A4:(0) =¥, {i=12-~ M,. (1)

If the upper ground plane is present, it is the (N, -+ 1)th conduc-
tor and, because A, vanishes on it, ¥, ; = 0. Substitution of (7)
into (11) gives

M | | A
Z[JT(o)ln(" °l)dl' v {fff,z,...,

M,.

(12)
Continuity of the tangential component of magnetic intensity
on the magnetic media boundaries requires that

X{Bwp)_s-(p)}:()’ (oont

P'l+ p‘t_ i=Ml+17M1+2:.”>M

(13)
where n, B* (p), and B~ (p) are the same as in (10). Further-
more, p; is the permeability on the side of I/, toward which n
points and pT is the permeability on the other side of /.
Substituting (10) into (13) and then dividing (13) by u_{1/p," —
1/u; ], we obtain

1 1
”0 ‘I;::—'-”’t
S el PO R Z fJT(p)
wroon
p—o p—9
( lo—e” lp—a'P)'"‘”’:O’

pon/
i=M+1,M+2,--- M.
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If the ith conductor is of finite cross section, then /, is a closed
curve on which

1
u.Jr(p) =—nxB"(p)
Ho

(15)

J(p) =

nXB" (p)

1
5 ) (9
where n is the unit normal vector that points outward from the
surface of the conductor. Furthermore, B*(p) and p} are,
respectively, the magnetic flux density and the permeability just
outside the conductor. In (16), J-(p) is the conduction current
on the conductor. Equations (15) and (16) imply that

Je(p) = Jr(e) (17)

w (p) ( )
on the surface of the ith conductor, provided this conductor is of
finite cross section.

If the ith conductor is an infinitesimally thin strip, then /, runs
from one edge of the strip to the other on which

conenlE8T0] o
Substitution of (10) for B* (p) in (18) leads to
Je(e) = [n,to) ufto)]JT(p)
+%[uftp) u,tp)]é §7r ()
(e o

on the surface of the ith conductor, provided this conductor is of
zero thickness.

Now, consider the auxiliary electrostatic problem which has
the same geometry as that of the present magnetostatic problem,
but with relative permittivities ¢/ /¢, set equal to wo/u,. The
formulation presented in [1] is, in fact, valid for dielectric media
of arbitrary shape. The unit vector u, in (11) of [1] should be
replaced by » when the dielectric media are arbitrarily shaped. It
is clear that (12), (14), (17), and (19) have the same mathematical
forms as (9), (11), (15), and (17) of [1], respectively. Therefore,
the solution of the magnetostatic problem can be related to that
of the auxiliary electrostatic problem by

1
I =——af(0),
Hofo

i=1,2,---,N, (20)

where J{(p’) is the conduction current of the magnetostatic
problem when 4, =1 is the only nonzero magnetic flux and
of(p’) is the free charge of the auxiliary electrostatic problem
when the potential of the ith conductor is unity and all other
conductors are grounded. Multiplying (20) by ¢, and summing
over i, we obtain

(21)

After noting that the right-hand side of (21) is J-(p’), we in-
tegrate (21) over /, to obtain (5) with the jith element of [C’]
given by

N, 1 N
2 I =—— X o2 (o),
=1 Hoo ;=1 '

i, j=1,2,---, N,

Ci= [l (o) dl, L ()
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Premultiplication of (5) by [C’]~! yields

‘P=P«0€0[C’]_11- (23)
The inverse of [C’] exists because [C’] is positive definite, which
can be concluded from the fact that the electrostatic energy
stored in the system is always greater than zero with nontrivial
free charge distribution on the conductors. Comparison of (23)
with (4) gives the desired relationship (2).

III. CONCLUSION

A simple relationship -between the inductance matrix and the
auxiliary capacitance matrix has been given. Thanks to this

1295

relationship, the computer code given in [1] and [3] for obtaining
the capacitance matrix of the electrostatic problem can be used to
obtain the inductance matrix of the magnetostatic problem.
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