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Abstract — Consider a mukiconductor transmission line consisting of NC

conducting cylinders in inhomogeneous media consisting of NJ homoge-

neous regions with permeabifities p, and permittivities c,. The inductance

matrix [L] fortheline isobttined bysolving tiemagnetostatic problem of

NC conductors in Nd regions with permeabilities p,. The capacitance

matrix [C] for the line is obtained by solving the electrostatic problem of

NC conductors in Nd re~ons with permittivities E,. It is shown that

[L]=yOcOIC’]-l, where [C’] is the capacitance matrix of an auxiliary

electrostatic problem of N, conductors in Nd regions wfth relative permit-

tivities set equaf to the reciprocals of the relative Permeabllities of the

magnetostatic problem, i.e., c[/cO = PO/p,.

I. INTRODUCTION

Fig. 1 shows a multiconductor transmission line consisting of

NC conductors and Nd insulating materials above a perfectly

conducting ground plane. The system is uniform in the z direc-

tion (direction of propagation), and thecross-sectiortal shapes of

the conductors and insulators are arbitrary. The insulators have

arbitrary permeabilities p, and permittivities <i. Art upper ground

plane could be present and treated as au additional conductor in

a manner similar to that of [1].

To the quasi-static approximation, the multiconductor trans-

mission line is characterized by a capacitance matrix [C], ob-

tained from an electrostatic analysis, and an inductance matrix

[L], obtained from a magnetostatic analysis. The formulation of

the problem for [C] and a numericaJ algorithm for its computa-

tion are given in [1]. In the appendix of [1] it is shown that if the

insulating matter is nonmagnetic, the inductance matrix of the

line is given by

[L] =po<o[&]-’. (1)

Here [~] is the capacitance matrix of the multiconductor trans-

mission line if all dielectric constants are set equal to 1.

In this paper we shall show that when the insulators are

magnetic, a modified relationship holds. In particular, it is

[L] =poco[c’-’ (2)

where [C’] is the capacituce matrix of the line if all relative

permittivities are set equal to the reciprocals of the relative

permeabilities, i.e.,

c: p.
—= — i=l,2,. ... N~., (3)
co A

Note that the auxiliary problem for finding [C’] has relative

permittivities less than unity if the corresponding relative per-

meabilities are greater than unity.

Relationship (2) is strictly true only if all conductors are

perfect. It assumes that all current in the magnetostatic problem

flows on the surfaces of conductors. For actual conductors,
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Fig. 1. A multiconductor transmission line in a multdayered dielectric and

magnetic region above a ground plane.

depending on the frequency, some of the current flows internal to

the conductors, Relationship (2) is then only approximate.

Although (2) can be inferred fro m‘ the last two sentences in

[2, sec. V], we have not seen au explicit proof in the literature.

The purpose of this short paper is to give a simple proof of (2)

for the multiconductor case with layered media.

II. PROOF C)F(2)

The electrostatic problem from which [C] is calculated is

formulated in detail in [1]. We shall refer to that formulation

when need~d. The magnetostatic problem from which [L] is

calculated E. an extension of the formulation for nonmagnetic

media, given in the appendix of [1]. The formulation for magnetic

media is givert below.

The inductance matrix [L] is an NC X NC matrix that satisfies

~=[L].~ (4)

where ~ and ~ are NC x 1 column vectors. The jth element of ~

is the z-directed conduction currenl on the j th conductor. The

i th element of ~ is the x-directed magnetic flux passing between

a unit length of the i th conductor and the lower ground plane. If

i’= =&[c’]; (5)

and if [C’]– 1 exists, then (4) will imply that the desired relation-

ship (2) is true. In the remainder of this section, we establish (5).

We formulate the magnetostatic problem with magnetic media

in terms of the totaf electric current Y=u: on the surfaces of the

conducting cylinders and on the boundaries between different

magnetic media. The total electric current on the conducting

surfaces is the conduction current plus the magnetization current.

The total electric current on the magnetic media boundaries is

the magnetization current. The magnetic flux density B“ is given

by

B= VXA=VAZXUZ (6)

where AZ is the only component of A due to steady current

flowing in the z direction. For the two-dirnensionaf problem, it is

given by

where 1, denotes the j th interface. The first NC interfaces are the

surfaces of the NC conductors. If the upper ground plane is
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present, the (NC + l)th interface is the surface of this plane. The

last NJ interfaces are the magnetic media boundaries. Thus,

114= MI+N; (8)

where iUl is NC if the upper ground plane is absent. If the upper

ground plane is present, then Ml is NC+ 1. The number N; of

magnetic media boundaries could be greater than Nd – 1 because

these boundaries are arbitrtily shaped, not necessarily parallel to

one another or to the lower ground plane. In (7), p’ is the

position vector of all’, and b’ is the position vector of the image

of dl’ about the lower ground plane.

Substituting (7) into (6) and assuming that p is not on any of

the interfaces {11 }, we obtain

(B(p)=–: f JJ, (P’) *–%
1P-PI )

xuzdl’. (9)
1=1 1,

The limits of (9) as p approaches 1, from either side are

(B+(p)=-: $ }JT(p’)fi-~ )X U, dl’
,=~ 1,

~ PO%(P)
~ (rlxu=),

(

p on 1,
(lo)

1=1,2,. ... M

where j{ denotes the principal value of the integral over 1,, and

n is a u~t vector normal to 1, at p. Moreover, B+ (p) is B(p) on

the side of 1, toward which z points, and B- (p) is B(p) on the

other side of 1,.

On the surface of the ith conductor, A= is constant and is the

x-directed magnetic flux IJZ passing between a unit length of the

i th conductor and the lower ground plane. Hence, similar to

[1, eq. (A2)],

4(P) =$, !
{

p on 1,

i=l,2,. ... A41.
(11)

If the upper ground plane is present, it is the (NC+ l)th conduc-

tor and, because A, vanishes on it, $~C+ ~ = O. Substitution of (7)

into (11) gives

(12)

Continuity of the tangential component of magnetic intensity

on the magnetic media boundaries requires that

[

B+(p) B-(p) 1{ p on 1,
nx — — — =0,

P: P: i= Ml+l, Ml+2,. ... h4

(13)

where n, B+ (p), and B– (p) are the same as in (10). Further-

more, K,+ is the permeability on the side of 1, toward which n

points and p; is the permeability on the other side of 11.

Substituting (10) into (13) and then dividing (13) by u=[1/p~ –
l/p; ], we obtain

{

p on 1,

(14)i= Ml+l, Ml+2>. -.>M.

If the i th conductor is of finite cross section, then 1, is a closed

curve on which

u=JT(p) =:nx B+(p) (15)

1

UZ.L(P) ‘~ nxll +(p)
P, (P)

(16)

where n is the unit normal vector that points outward from the

surface of the conductor. Furthermore, B+(p) and W: are,

respectively, the magnetic flux density and the permeability just

outside the conductor. In (16), J=(p) is the conduction current

on the conductor. Equations (15) and (16) imply that

Jc(P) ‘~
P*!’P)JT(”)

(17)

on the surface of the i th conductor, provided this conductor is of

finite cross section.

If the ith conductor is an infinitesimally thin strip, then 1, runs

from one edge of the strip to the other on which

[

~+(P) ~-(P)
Jc(p)uz=nx — — 1 (18)

P:(P) ‘K(P) “

Substitution of (10) for B * ( p) in (18) leads to

[

1 1
Jc(p) =!!! ~ 1— .TT(p)

2 k (P) ‘W(P)

[

1 1
+~— —

]/ ; JT(P’)
2!7 P:(P) ‘W(P) ,=1 !

(

P–pt _ p–~,
.—

)
— .ndl’

IP-P’12 lP-iv2
(19)

on the surface of the i th conductor, provided this conductor is of

zero thickness.

Now, consider the auxiliary electrostatic problem which has

the same geometry as that of the present magnetostatic problem,

but with relative permittivities C{/Co set equal to ~. /v,. The

formulation presented in [1] is, in fact, valid for dielectric media

of arbitrary shape. The unit vector u in (11) of [1] should be

replaced by n when the dielectric rned;a are arbitrarily shaped. It

is clear that (12), (14), (17), and (19) have the same mathematical

forms as (9), (11), (15), and (17) of [1], respectively. Therefore,

the solution of the magnetostatic problem can be related to that

of the auxiliary electrostatic problem by

1
J}’)( p’) = —4’)(P’)> i=l,2,. ... NC (20)

Po~o

where ~~ )( p’) is the conduction current of the magnetostatic

problem when +, =1 is the only nonzero magnetic flux and

0,$) (P’) is the free charge of the a~fiary electrostatic problem
when the potential of the i th conductor is unity and all other

conductors are grounded. Multiplying (20) by I), and~ summing

over i, we obtain

& ,&#’(P’) +,;JwP’)*t= (21)
1=1

After noting that the right-hand side of (21) is ~c ( p’), we in-

tegrate (21) over 1, to obtain (5) with the jith element of [C’]

given by

J~ = fJ#)(P’) all’, i,]” =l,23. ... NC. (22)
1,
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Premultiplication of (5) by [C’]- i yields relationship, the computer code given in [1] and [3] for obtaining

the capacitance matrix of the electrostatic problem can be used to
;=poeo[c’] -’z (23) obtain the inductance matrix of the magnetostatic problem.

The inverse of [C’] exists because [C’] is positive definite, which

can be concluded from the fact that the electrostatic energy

stored in the system is always greater than zero with nontrivial
[1]

free charge distribution on the conductors. Comparison of (23)

with (4) gives the desired relationship (2). [2]

III. CONCLUSION [3]

A simple relationship -between the inductance matrix and the

auxiliary capacitance matrix has been given. Thanks to this
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